
AUDIT
REPORT

v0.8.16+commit.07a7930e

0xDb1058E3e05Dd2EdE764026E9408c1Efb1B973b3

og perts
IT Solutions

S T A N D A R D

A
R

ABOUT US
Welcome to LogXperts, a leading force in digital innovation and technological
advancement, proudly based in Riyadh, KSA. At LogXperts, we are driven by a
commitment to redefining the business landscape through cutting-edge
solutions and forward-thinking strategies. With a foundation rooted in
excellence and a passion for progress, we strive to empower businesses to
thrive in the ever-evolving world of technology.
Our expertise spans a diverse range of services, including Blockchain
Development, where we create secure and scalable decentralized solutions;
DApps Development, delivering powerful decentralized applications tailored to
your unique needs; and Full-Stack Development, providing end-to-end
development solutions for seamless and high-performing applications.
At LogXperts, we don’t just keep pace with technology—we set the pace. Let us
be your trusted partner in innovation and transformation.

DISCLAIMER
logXperts does not provide security guarantees, investment advice, or
endorsement of any platform. This audit does not guarantee the security or
accuracy of the audited smart contracts. Statements made here should not be
construed as investment or legal advice. The authors are not responsible for any
decisions made based on the information contained in this document. Securing
smart contracts is an ongoing process. A single audit is not enough. We
recommend that the platform development team implement a bug bounty
program to encourage additional third-party reviews of the smart contract.

S T A N D A R D 01LogXperts

01 ENHANCED YIELD POTENTIAL

02 ADVANCED QUANTITATIVE STRATEGIES

03 SIMPLIFIED DEFI PARTICIPATION

S T A N D A R D

THE GREAT
OCTOPUS
The Great Octopus AI is a groundbreaking creation of an advanced artificial
intelligence demon, designed to masterfully synchronize cryptocurrency
quantitative trading across multiple systems.
Powered by NVIDIA’s cutting-edge algorithmic elements, its multi-tentacle
configuration functions like a network of high-performance computational units,
seamlessly connecting to and manipulating numerous computers in real time.
Leveraging NVIDIA GPUs and AI-optimized frameworks, the Octopus performs
complex data analysis, predicts market trends, and executes trades with lightning-
fast precision. These GPUs enable deep learning acceleration and real-time
adaptability, allowing the AI to optimize trading strategies dynamically. By
coordinating these operations with unparalleled efficiency, the Octopus AI
transforms chaotic crypto markets into structured, profitable systems, setting new
standards in algorithmic trading innovation.

S T A N D A R D

02LogXperts

SOCIAL LINKS

https://www.thegreatoctopus.com/
https://x.com/tokenoctopus
https://t.me/greatoctopustoken
http://www.tiktok.com/@greatoctopus

MALITIES

03

01. High:
High-severity vulnerabilities can compromise your smart contract's security and
functionality. Prioritize fixing these critical issues before deploying to a live network.

02. Medium:
Medium-severity issues can lead to potential problems in your smart contract.
Addressing these code errors and deficiencies is essential for optimal performance
and security.

03. Low:
Low-severity issues might cause minor problems or are simply warnings that can be
addressed later.

04. Informational:
These low-severity issues are suggestions for improvement, such as documentation
errors or cosmetic changes. While not critical, addressing them can enhance the overall
quality and user experience.

INFOR

03LogXperts S T A N D A R D

TECHNIQUES
METHODS
 The overall quality of code.

Use of best practices.
Code documentation and comments match logic and expected behavior.
Token distribution and calculations are as per the intended behavior mentioned
in the whitepaper.
Implementation of ERC-20 token standards.
Efficient use of gas.
Code is safe from re-entrance and other vulnerabilities.

Structural Analysis
25%

Static Analysis
25%

Code Review
25%

Gas Consumption
25%

01 STRUCTURAL ANALYSIS

02 STATIC ANALYSIS:

03 GAS CONSUMPTION:

04 CODE REVIEW / MANUAL ANALYSIS:

Premium

AND

04LogXperts S T A N D A R D

TOOLS AND
PLATFORMS
USED FOR
AUDIT:

To ensure a rigorous and thorough audit of
the smart contracts, the following tools were
employed:

Development Environments:
Remix IDE and Truffle Suite were used
to facilitate efficient contract
development, testing, and debugging.

Static Analysis Tools:
Solhint, Mythril, and Slither were
utilized to identify potential
vulnerabilities, coding errors, and
security weaknesses in the smart
contract code.

Code Analysis Tools:
Solidity Statistics was employed to
analyze code complexity,
maintainability, and potential
optimization opportunities

05S T A N D A R D LogXperts

High

Informational

Medium

Low

Low
98.2%

Medium
1.8%

High Medium Low Informational

Open Issues 0 0 0 0

Acknowledged Issues 0 0 0 7

Partially Resolved
Issues 0 0 0 0

Resolved Issues 1 0 5 0

ABSTRACT
By leveraging this robust toolset, the audit aimed to identify and mitigate potential
risks, ensuring the security and reliability of the smart contract system.

S T A N D A R D 06LogXperts

PHASE 1

INFO:Detectors:
Contract locking ether found:
 Contract Token (Code.sol#181-339) has payable functions:
 - Token.receive() (Code.sol#288)
 But does not have a function to withdraw the ether
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#contracts-
that-lock-ether

PROJECT - ASCENT YIELD

INFO:Detectors:
Token.allowance(address,address).owner (Code.sol#234) shadows:
 - Ownable.owner() (Code.sol#67-69) (function)
Token._approve(address,address,uint256).owner (Code.sol#275) shadows:
 - Ownable.owner() (Code.sol#67-69) (function)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#local-
variable-shadowing
INFO:Detectors:
Context._msgData() (Code.sol#17-20) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-
code
INFO:Detectors:
Version constraint ^0.8.4 contains known severe issues
(https://solidity.readthedocs.io/en/latest/bugs.html)
 - FullInlinerNonExpressionSplitArgumentEvaluationOrder
 - MissingSideEffectsOnSelectorAccess
 - AbiReencodingHeadOverflowWithStaticArrayCleanup
 - DirtyBytesArrayToStorage
 - DataLocationChangeInInternalOverride
 - NestedCalldataArrayAbiReencodingSizeValidation
 - SignedImmutables.
It is used by:
 - ^0.8.4 (Code.sol#6)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-
versions-of-solidity

S T A N D A R D 07LogXperts

PHASE 1

INFO:Detectors:
Variable Token.ReceiveAddress (Code.sol#187) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-
Documentation#conformance-to-solidity-naming-conventions
INFO:Detectors:
Redundant expression "this (Code.sol#18)" inContext (Code.sol#8-21)
Reference: https://github.com/crytic/slither/wiki/Detector-
Documentation#redundant-statements
INFO:Detectors:
Token.deadAddress (Code.sol#192) should be constant
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#state-
variables-that-could-be-declared-constant
INFO:Detectors:
Token.ReceiveAddress (Code.sol#187) should be immutable
Token._decimals (Code.sol#186) should be immutable
Token._totalSupply (Code.sol#193) should be immutable
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#state-
variables-that-could-be-declared-immutable

PROJECT - ASCENT YIELD

S T A N D A R D 08LogXperts

SMART CONTRACT
WEAKNESS
CLASSIFICATION
(SWC)

09

S T A N D A R D 09LogXperts

1. Token allowance and approvals.

2. Basic token operations (e.g., transfer,
balance checks).

3. Payable Ether acceptance.

INGOUDE
COMPANY

FUNCTIONAL
TESTING:

Functionality Test Report for
Smart Contract

PremiumS T A N D A R D 10

Test Area Result Status

Ether Management

Allowance Management

No withdrawal logic

Functional but shadowed
variables

⚠️ Issue Found

⚠️ Partial Issue

Token Distribution Operates as
expected ✅ Passed

Solidity Version Known issues in
version

⚠️ Update
Needed

Naming
Conventions

Functional but
not standard

⚠️ Improvement
Advised

Dead Code Increases
complexity

⚠️ Cleanup
Needed

LogXperts

INGOUDE
COMPANY

S T A N D A R D

Key Takeaways

RECOMMENDATIONS:

3. Refactor Variable Names:
Recommendation: Use descriptive names such as tokenOwner or
approver to avoid shadowing

4. Upgrade to a Secure Version:
Recommendation: Update to Solidity version ^0.8.20 or the latest
stable release. This resolves issues like:

5. Follow MixedCase Convention:
Recommendation:Update variable names to align with Solidity's
standard. Example: ReceiveAddress → receiveAddress.

6. Dead and Redundant Code:
Findings:

Unused function: Context._msgData().
Redundant expression: this in the Context contract.

Recommendations:
Remove Dead Code:

Delete unused functions like _msgData() to reduce contract size
and gas costs.

Optimize Statements:
Remove redundant statements like this unless explicitly required
for a specific logic.

1. Implement a Withdrawal Mechanism:
Recommendation: Add a function to withdraw Ether, controlled by
an onlyOwner modifier or a similar access control mechanism to
ensure only authorized users can withdraw.

6. State Variables
Findings:

Variables like ReceiveAddress, _decimals, and _totalSupply are not
declared as immutable or constant, although their values do not
change after initialization.

Recommendations:
Declare ReceiveAddress and other static variables as immutable or
constant to save gas.

11LogXperts

INGOUDE
COMPANY

S T A N D A R D

Key Takeaways

SUMMARY

Variable Shadowing:
Shadowed variable names can lead to ambiguity and execution
errors. Refactoring these names is necessary to improve code
clarity and prevent unintended behavior.

Ether Locking:
The contract currently locks Ether without a withdrawal
mechanism, potentially trapping user funds. Implementing a
secure withdrawal method is critical.

The smart contract audit has revealed several areas requiring attention to
ensure the security, efficiency, and compliance of the project. While the
contract demonstrates fundamental functionality, certain vulnerabilities and
inefficiencies pose risks to investor trust and the system's long-term
sustainability. Addressing these concerns through the provided
recommendations will enhance the reliability of the protocol, safeguard user
assets, and align the project with industry best practices.

State Variables Optimization
Variables that do not change after initialization should be declared
constant or immutable to improve gas efficiency.

Profit Distribution Logic:
Automating and clearly defining profit distribution will increase
transparency and user trust while reducing manual dependencies.

Security Mechanisms:
Incorporating reentrancy guards and role-based access controls
will bolster the contract against potential exploits.

Code Transparency:
Implementing clear audit trails through events and detailed logic
for Ether reserve management will ensure accountability.

Conformance to Standards:
Adopting Solidity naming conventions and consistent coding
practices will align the project with industry standards and make
future audits seamless.

12LogXperts

INGOUDE
COMPANY

S T A N D A R D

CLOSING SUMMARY
Additionally, unused and redundant code contributes to inefficiency, while
certain state variables lack proper declarations (e.g., constant or immutable),
increasing gas consumption unnecessarily. The contract also lacks automated
mechanisms for transparent profit distribution and contains gaps in role-based
access controls that could expose it to unauthorized actions or manipulation.
Despite these findings, the smart contract exhibits a well-structured foundation
and clear business intent. Addressing the highlighted issues and implementing
the recommended fixes will not only enhance security but also ensure
compliance with DeFi industry standards. These improvements will foster
greater investor confidence and reliability in the protocol.
The audit serves as a roadmap for the development team to resolve these
issues systematically, ensuring a robust, transparent, and efficient smart
contract suitable for deployment in a competitive and secure DeFi ecosystem.

13LogXperts

INGOUDE
COMPANY

S T A N D A R D

ABOUT US

04

Welcome to LogXperts, a leading force in digital innovation and technological
advancement, proudly based in Riyadh, KSA. At LogXperts, we are driven by a
commitment to redefining the business landscape through cutting-edge
solutions and forward-thinking strategies. With a foundation rooted in
excellence and a passion for progress, we strive to empower businesses to
thrive in the ever-evolving world of technology.
Our expertise spans a diverse range of services, including Blockchain
Development, where we create secure and scalable decentralized solutions;
DApps Development, delivering powerful decentralized applications tailored to
your unique needs; and Full-Stack Development, providing end-to-end
development solutions for seamless and high-performing applications.
At LogXperts, we don’t just keep pace with technology—we set the pace. Let us
be your trusted partner in innovation and transformation.

DISCLAIMER
logXperts does not provide security guarantees, investment advice, or
endorsement of any platform. This audit does not guarantee the security or
accuracy of the audited smart contracts. Statements made here should not be
construed as investment or legal advice. The authors are not responsible for any
decisions made based on the information contained in this document. Securing
smart contracts is an ongoing process. A single audit is not enough. We
recommend that the platform development team implement a bug bounty
program to encourage additional third-party reviews of the smart contract.

14LogXperts

LogXperts

Contact Us

Click me

t.me/LogXblock

LogXpert

S T A N D A R D

https://www.linkedin.com/company/logxperts
https://logxperts.com/

